
Simulation advances using the ESL Simulation Language
and the Virtual Test Bed

John G Pearce
ISIM International Simulation Limited

161 Claremont Road
Salford, M6 8PA, UK

mailto:johnpearce@isimsimulation.com

Keywords: Virtual Test Bed, VTB, European
Simulation Language, ESL, Continuous System Simulation

Abstract
The Virtual Test Bed (VTB) is a software environment

for constructing simulations of large scale multidisciplinary
dynamic systems. The VTB provides a common platform in
which component models developed by different teams
using different tools can be merged. ESL is one such
simulation tool which was developed for the European
Space Agency for robust dynamic simulation of complex
systems. This paper describes progress in the development
of an interface between the ESL simulation tool and the
professional release of the Virtual Test Bed (VTB Pro). The
chosen technique for the interface to VTB Pro is through the
use of a bespoke ESL Importer program which takes .NET
CLR assemblies generated from ESL models; allows a user
to create a graphical icon to represent the model in a VTB
diagram; and adds the model to the VTB component
database. This facility allows the advantages of ESL models
(differential equation representation, accurate non-linearity
handling and proven robustness) to be made available
through the graphical environment of VTB Pro. In order to
illustrate the use of the new VTB facility, the
implementation of a simulation of a multi-legged mobile
robot (Genghis – originally developed for the European
Space Agency to demonstrate ESL’s distributed simulation
capability) is described.

1. INTRODUCTION

The Virtual Test Bed (VTB) is a software environment
for developing simulations of large scale multidisciplinary
dynamic systems. It allows alternative designs to be
analysed and tested before being committed to manufacture.
The main application that is driving the development of the
VTB is a need to model advanced power systems for navy
ships. In such systems there are many different energy
generation and storage devices including nuclear, fuel cells
and gas turbines. The distribution networks are also of
unconventional design having dc power busses and high
numbers of interconnections that can be rapidly
reconfigured. Constructing complete coherent simulations

of such large scale systems, involving widely differing
technologies poses a serious challenge. Each discipline
group will use their preferred simulation tool to model their
part of the whole system. The VTB aims to satisfy this
challenge by providing a common platform in which
component models developed by different teams using
different tools can be merged. A companion program, Eye-
Sys, may be used to link three dimensional visualizations to
a VTB simulation.

ESL [Crosbie et al 1981, Hay et al 1994, Pearce and
Crosbie 2000] is an advanced high-level simulation
language for modelling large-scale systems from a variety
of disciplines. ESL is an acronym of the European
Simulation Language (originally European Space Agency
Simulation Language) and comprises two components: the
language itself and a graphical user interface - the Integrated
Simulation Environment (ISE). ESL is a continuous system
simulation language and is used for modelling dynamic
systems which are usually described by ordinary and partial
differential equations. ISE provides the environment from
which all stages of the simulation process can be managed.
The software was developed mainly through a series of
contracts with ESTEC - the European Space Research and
Technology Centre - part of ESA with additional support
from various industrial simulation consultancy activities.

In this paper ESL is used as an example to illustrate the
process of integrating models generated using other tools
with the professional release of VTB (VTB Pro). The work
described is a continuation of an earlier project involving
integration with VTB 2003 [Pearce 2007].

2. ESL SEGMENTS

A feature of ESL that lends itself to integration with
other software is its segment structures. Segments were
originally included in ESL as a means of providing a
parallel processing capability. The idea was that a large
simulation could be broken down into self-contained
segments that could be executed in parallel on different
processors or networked computers. Communication takes
place between segments at pre-determined communication
points through a TCP IP protocol. There are three types of
segment in ESL:

• Remote segments – these can be assigned to
different processors for truly parallel
operation.

• Emulated segments – these allow parallel
operation to be emulated on a single computer
– useful for testing parallel segments before
assignment to separate processors and for
implementing multi-rate simulations.

• Embedded segments – used where an ESL
model is to be integrated with another
application.

An ESL embedded segment is a particular way of
expressing a dynamic model in which all interface variables
appear in special structures call Packages. Figure 1 is an
example of an embedded segment for a simple linear model
of a dc motor. Inputs to the model appear in the package
Esl_inp; State outputs appear in the package Esl_state and
algebraic ouputs in package Esl_out. The package Esl_par
contains parameters which should be accessible to the user
and Esl_view contains viewables, i.e. any variables that may
be plotted are used to drive visualizations. The dynamic
model itself is defined in the Segment structure.

Using an ESL utility, eslgen, an embedded segment
may be compiled into a dynamic link library (DLL), a COM
server or a .NET CLR assembly. The .NET CLR route is
used for the VTB Pro integration. The .NET CLR assembly
that is generated from the embedded segment provides
access to the package variables and a number of functions
required to run the model (see Table 1). The assembly also
provides access to specific simulation parameters (table 2)
and those variables defined in the embedded segment
packages.

The embedded segment features described above are
completely general and can be accessed from any .NET
compatible program. A further stage of processing is
required to make the ESL embedded segment accessible
from the VTB.

Table 1 ESL .NET CLR assembly functions

Name Meaning

ExStrt Prepare embedded code for use - must only
be used once at program start.

ExInit Initialise embedded segment for a single
simulation run.

ExSim
Advance Simulation by one time-frame
(specified by the simulation parameter
CINT).

ExPrestep Evaluate algebraic outputs without
advancing the simulation

ExFin Close down simulation - must only be used
once at program termination.

EMBEDDED
Package Esl_inp;
 Real: va, tl;
End Esl_inp;
--
Package Esl_state;
 Real: ia, Wa;
End Esl_state;
--
Package Esl_out;
 Real: v_error;
End Esl_out;
--
Package Esl_par;
 Parameter Real:Kt/0.0275/,
 Kb/0.04/, Ra/9.0/,
 La/4.065e-03/, Ja/1.71e-06/,
 Ba/1.5e-04/;
End Esl_par;
--
Package Esl_view;
 Real: v_back, t_motor, t_avail;
End Esl_view;
--
Segment dc_motor;
 Use Esl_inp; Use Esl_state;
 Use Esl_out; Use Esl_par;
 Use Esl_view;
 Real: i, w, ve, vb, tm, ta;
 Dynamic
 ve:= va-vb;
 i:=Transfer(1/(La*s + Ra))*ve;
 tm:= Kt*i; ta:= tm-tl;
 w:= Transfer(1/(Ja*s+Ba))*ta;
 vb:= Kb*w;
 Communication
 ia := i; wa := w;
 v_back := vb; v_error := ve;
 t_motor := tm; t_avail := ta;
End dc_motor;

Figure 1 dc motor embedded segment

3. INTEGRATION WITH THE VTB
3.1. ESL Importer

In order to be accessed from the VTB the ESL .NET
assembly must appear in VTB as an entity (entities are the
basic VTB simulation elements). This is achieved through a
wrapper (ESL Component) that is automatically generated
using a VTB ESL Importer utility. The wrapper accesses the
specific ESL .NET assembly functions (Table 1) and data
(as specified in the packages) while providing a generic
interface with the VTB. This arrangement is shown in
Figure 2.

The ESL Importer (which is based on the standard VTB
entity builder) enables a user to:

• Choose a default icon for the ESL entity or design
a custom icon.

• Determine which of the inputs and outputs
specified in the embedded segment packages are to
appear as ports on the icon.

• Change default values of model parameters and
specify which are to be accessible from VTB at
run-time.

• Set the entity name and add comments and units
for all ports, parameters and viewables.

Figure 3 is a screen dump showing the appearance of
the dc motor example opened in the ESL Importer.

Table 2 ESL simulation parameters

Parameter Default
value Meaning

T Current value of time.

Tstart 0.0 Initial value of time (T) at start
of run.

Tfin 10.0 Final value of T at end-of-run.

Cint 1.0 Communication interval –
must be same as VTB.

Diserr 0.0001 Discontinuity detection error
tolerance.

Interr 0.001 Integration error tolerance.

Algo 1 (RK5) Integration algorithm (8
algorithms are available).

Nstep 1 Minimum number of
integration steps in CINT.

Figure 2 VTB – ESL interface

Figure 3 ESL Importer

Once ESL entities are created they are loaded in the

VTB component database from which they are available for
inclusion in any simulation schematic.

3.2. Execution Considerations

The following sequence of operations takes place when
a VTB simulation containing ESL entities is executed:

• When the entity is first loaded, the function ExStrt
is called to initialize the embedded segment code.

• Prior to any simulation run, input values are passed
to the entity and the function ExInit is called to
initialize the embedded segment. At this point all
entity outputs will have been correctly initialized.

• In order to advance the embedded segment solution
by one VTB time-step, the entity inputs are
updated and the function ExSim is called. During
this time step all entity inputs are held constant. At
the end of the step all state entity outputs will have
been updated.

• Before commencing a new simulation step, any
algebraic entity outputs are evaluated using the
function ExPrestep as part of a VTB pre signal-step
sequence which resolves all algebraic relationships
within the simulation.

4. ESL – VTB DEMONSTARTION APPLICATION

In order to evaluate the ESL-VTB interface more fully
and provide a measure of performance, a more substantial
application was required. To this end, an existing ESL
simulation of a six legged walking robot – “Genghis”
[Pearce 1993, Hay et al 1994] – was modified to be run
under the VTB.

The simulation was originally undertaken under an
ESA contract to demonstrate ESL’s distributed and real-
time simulation capability. The simulation comprised a
kinematic model of the autonomous robot (which included
edge avoidance, mutual avoidance and tracking algorithms);

Virtual Test Bed

ESL Component
(wrapper)

ESL .NET CLR
assembly

Created using
eslgen

Created using
ESL Importer

an interactive graphical control panel, from which the
robot’s speed and direction could be controlled; and a main
module which coordinated the other components and
generated graphical data for a 3D visualization. For the ESA
contract the simulation ran on Sun workstations – two
instances of the robot model plus two corresponding control
panels were supported, each (in principle) running on
different networked computers. A separate Silicon Graphics
computer graphically rendered the model using visualization
software written by EADS-CASA of Spain. The robots had
the capability of simultaneously negotiating an arbitrarily
defined uneven terrain while tracking a moving target, or
each other. Figure 4 shows the original architecture and
Figure 5 the appearance of the robot and control panel as
rendered by the Silicon Graphics computer.

Figure 4 Original Genghis architecture

Figure 5 Original Genghis on Silicon Graphics display

In order to demonstrate multiple ESL entities interacting
with each other in a VTB simulation, embedded segments
were created for the Main model, the Robot and the Control
panel. These segments defined the I/O ports, parameters and
viewables in their respective packages, as described in
section 2. ESL entities were generated from the embedded
segments and connected in a VTB schematic. Figures 6
shows the new VTB architecture and Figure 7 is a screen-
dump of the actual VTB schematic. The objective was to
have fairly complex entities with multiple connections –
clearly achieved in this application.

Figure 6 VTB Genghis architecture

Figure 7 VTB Pro Genghis schematic

5. VISUALIZATION

Three-dimensional visualizations are realized from a
VTB Pro simulation through a companion software
package, Eye-Sys [IDV Inc]. A 3D model of the Genghis
robot was developed in using Eye-Sys and this was linked to
the VTB Pro simulation. The simulation calculates the
global position and orientation of the robot body and
orientation of each of the six legs relative to the body. This

VTB Pro
schematic

Main
(ESL Entity)

Control panel
(ESL Entity)

Robot
(ESL Entity)

Eye-Sys
visualization

Animation Main
model

Robot 1
segment

Robot 2
segment

Control
panel 1

Control
panel 2

ESL model –
(Sun workstation)

Visualization –
(Silicon-graphics)

ESL segments – (Sun workstations)

Figure 8 Genghis walks in VTB Pro

information is used to drive the simulation. Both the
simulation and the visualization access an uneven terrain
model over which the robot is constrained to walk. The
visualization is complemented with ocean and sky models
provided by the Eye-Sys software. Figure 8 shows Genghis
striding out in its virtual environment.

6. DISCUSSION

The simulation, although a purely kinematic model,
includes a considerable quantity of matrix calculations to
determine the position and orientation of the robot
components relative to the arbitrarily specified uneven
terrain. Extensive use is also made of ESL’s discontinuity
detection mechanism to determine the precise times at
which each of the robot’s legs makes contact with the
ground. Using a step size of 0.001s, the simulation runs
approximately four times faster than real-time on a 3GHz
Pentium processor.

Further development of the ESL – VTB integration
would include improvement of the creation of .NET
assemblies from ESL models, eliminating the need for
textual editing of the source code to add package structures.
Ideally there would be an option to generate .NET
assemblies directly from a diagrammatically defined
representation of the model in the Interactive Simulation
Environment (ISE).

Another development would be the provision to create
natural ports (i.e. a single port communicating both an
across and through variable, such as voltage and current or
velocity and force) in addition to signal ports (i.e. a single
port communicating a single variable) in ESL, since these
are dealt with very effectively in the VTB.

7. CONCLUSIONS

The latest stage of the development of a method of
integrating models created using the ESL simulation tool

with the VTB has been described. The method involves
generating .NET CLR assemblies from ESL embedded
segment structures from which VTB entities are created and
added to the VTB component database using a bespoke
importer utility. The technique has been illustrated through
an example of a multi segment simulation of an autonomous
walking robot – Genghis. The concepts of importing
external models using automatically generated wrapper code
apply equally to other commonly used tools. Overall the
exercise has demonstrated the versatility of the VTB to
incorporate models developed in using other tools and the
ease of linking visualization to a simulation.

Acknowledgements
This research has been supported by the Office of

Naval Research through Awards N00014-04-1-0373 and
N00014-08-1-0697. The author also acknowledges the
contributions of Blake Langland and Claude Broughton of
the University of South Carolina for the development of the
ESL Importer and valuable suggestions.

References
Crosbie, R.E., Hay, J.L. and Pearce, J.G. 1981.

"Simulation Studies with Modern Computer Structures".
Final Report, (ESTEC Contract 4155/79), ESTEC,
Noordwijk, The Netherlands.

Hay, J.L., Pearce, J.G., Crosbie, R.E. and Pallett, S.
1994. “ESL Simulation Tool”. Final Report, (ESTEC
Contract 10011/92/NL/JG Work Order No. 2), ESTEC,
Noordwijk, The Netherlands.

Pearce, J.G. 1993. "Six legged walking robot

simulation". In proceedings of the United Kingdom
Simulation Society Conference, (Keswick UK, 1993),
UKSC 1-5.

Pearce, J.G. 2007. “Interfacing the ESL Simulation

Language to the Virtual Test Bed”. In Proceedings of the
2007 Western Multiconference on Computer Simulation,
(San Diego, CA, Jan 14-17). SCS, San Diego, CA, 166-171.

Pearce, J.G. and Crosbie, R.E. 2000. "ESL-ISE - A
Simulation Tool Developed for the Space Industry". In
Proceedings of the 2000 International Conference on
Simulation and Multimedia in Engineering Education, (San
Diego, CA, Jan 23-27). SCS, San Diego, CA, 115-120.

ISIM International Simulation Limited

http://isimsimulation.com

Interactive Data Visualizations Inc

http://www.idvinc.com

